skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bolar, Abhishek Lokesh"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Automotive structures are primarily made of flexible sheet metal assemblies. Flexible assemblies are prone to manufacturing variations like springback which may be caused due to non-isotropic material properties from cold rolling, springback in the forming process, and distortion from residual stresses when components are clamped, and spot welded. This paper describes the curation of a large data set for machine learning. The domain is that of flexible assembly manufacturing in multi stages: component stamping, configuring components into sub-assemblies, clamping and joining. The dataset is generated by nonlinear FEA. Due to the size of the data set, the simulation workflow has been automated and designed to produce variety and balance of key parameters. Simulation results are available not just as raw FE deformed (sprung back) geometries and residual stresses at different manufacturing stages, but also in the form of variation zones and fits. The NUMISHEET 1993 U-draw/bending was used a reference for tooling geometry and verification of the forming process. Additional variation in the dataset is obtained by using multiple materials and geometrical dimensions. In summary, the proposed simulation method provides a means of generating a design space of flexible multi-part assemblies for applications such as dataset generation, design optimization, and machine learning. 
    more » « less